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SUMMARY 
Pseudospectral methods are used for the computation of the time-dependent convective flows which arise in 
shallow cavities filled with low-Prandtl-number liquids when submitted to a horizontal temperature 
gradient. In similar situations several former numerical results have been shown to disagree about the 
determination of the threshold of oscillations and about the subsequent supercritical regimes. Two different 
tau-Chebyshev methods based on the vorticity-streamfunction formulation and using multistep time 
schemes are considered. Their results are discussed to assess the validity of the solutions. The physical 
problems concern rectangular cavities which involve either a rigid or a stress-free top wall and either 
conducting or insulating horizontal walls. Aside from the prediction of the onset of oscillations, which is 
discussed in the various situations with respect to the results of linear and non-linear analyses and to other 
computational results, the present study exhibits some bifurcation sequences and a hysteresis cycle at 
moderate Grashof numbers which are associated to the occurrence of multiple solutions. 
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INTRODUCTION 

The hydrodynamics of crystal growth from melts has been the subject of a number of papers 
during the last 10 years. A survey of the questions involved can be found, for example, in 
References 1-3. The difficulties of direct numerical simulation of complex systems involving 
thermosolutal convection coupled with interface morphology have been evoked, for example, in 
References 4-6. One of the major causes of striations in grown crystals was established to be the 
mechanism of stable and periodic temperature fluctuations in the liquid phase. The occurrence of 
an oscillatory motion superimposed upon a steady convective flow has been observed experi- 
mentally by Hurle et aL7 for molten gallium inside a rectangular boat when the imposed 
horizontal temperature gradient is larger than a critical value (see also References 8-10). The 
oscillatory behaviour occurring during the transient to the steady state has been extensively 
analysed by Patterson” (see also References 12 and 13). BusseI4 and Clever and Busse” have 
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shown in the case of low-Prandtl-number fluid layers heated from below that the oscillatory 
instability of two-dimensional rolls is caused mainly by the action of momentum advection terms. 
The stability with respect to two- and three-dimensional disturbances has been analysed by 
Hart,l6.l7 Gill” and, recently, by Laure and Roux” in the case of a single-cell flow thermally 
driven by an imposed horizontal temperature gradient (known as the Hadley circulation) inside a 
shallow layer for a variety of dynamical and thermal conditions. For the rigid-free case (R-F) the 
critical mode corresponds to a longitudinal two-dimensional oscillatory mode with reduced (with 
respect to height) wavelength Ax = 4 6  for Prandtl number Pr < 0.0045 when the horizontal walls 
are insulating and Pr < 0077 when the horizontal walls are conducting. The transition occurs 
towards three-dimensional oscillatory modes for larger values of Pr. For the rigid-rigid case 
(R-R) the critical flow involves transverse two-dimensional steady modes for Pr < 0.034 with 
insulating conditions and for Pr < 0  114 with conducting conditions with the same reduced 
wavelength Ax =2.34. However, these studies do not involve any lateral confinement effect so that 
they are valid only to give guides for the fundamental trends of the solution according to the 
values of the physical parameters, namely the Grashof number Gr and the Prandtl number Pr. 

The lateral walls have a stabilizing effect on the steady motion. When Pr # 0, conducting 
boundary conditions result in more inhibition of the oscillatory motion which occurs for larger 
Gr than with insulating conditions; this differs from the limiting case Pr = 0, where the critical 
Grashof number at the onset of the oscillatory motion, Grc, ,Jsc, is not dependent on the thermal 
boundary conditions of horizontal walk2’ The limiting case Pr = 0 is representative of the 
convective regimes for very small Pr and gives an asymptotic lower bound for the value of 
Grc, osc.i For Pr = 0, stability analyses predict Grc, osc = 7580 (R-F), Grcs osc = 7942 (R-R) for an 
infinite fluid layer” and Grc, osc = 13 722 (R-F), Grc, osc = 25 525 (R-R) for a finite cavity with an 
aspect ratio A = 4 (Table I).” The experimental observations of Hurle et d7 made with gallium 
(Pr = 0.02, R-F-A) using boats with A 2 2 confirm the stabilizing effect of lateral walls: for 
A = 4-76 the critical Grashof number is about 23 500 and this tends towards a limiting value of 
15 000 when A > 6. (Herein, the insulating and conducting cases will be referred to by R-F-A, 
R-R-A and R-F-C, R-R-C respectively.) 

In relation to the direct numerical simulation of convection in low-Pr fluids, we refer to a 
number of pioneering papers, for example, References 21-26. For the A = 4 cavity, numerical 
studies were conducted by the present authors with a spectral direct s i m u l a t i ~ n ~ ~ , ~ ~  and by 
Winters using a technique which locates Hopf bifurcation conditions from a finite element 
solution of the extended system of equations.28 The numerical results given in References 27, 28 
and 36 agree with each other and exhibit the effect of confinement by giving a threshold at about 
80% above the critical Grashof number obtained by Laure and Roux” for an infinite (R-F) layer 
with Pr = 0. The accurate determination of the threshold of oscillatory convection with direct 
simulation is very delicate because it is strongly mesh- and method-dependent. Coarse meshes 
may result in the stabilization of the solution and in the delay of the onset of oscillatory 
convection at a higher value of Grc,osc,  with damped amplitudes of oscillation. Thus a wide 
spread is found between the critical Grashof numbers determined from the direct simulation 
solution, in disagreement with the results of the stability analysis. For instance, the stability 
analysis in a cavity of aspect ratio A = 4 predicts Grc,osc at 13 722 (Pr  = 0, R-F), 14767 
and 16598 (Pr  = 0015, R-F-C and R-F-A respectively, ‘Table I).28 Ben Hadid and R o u x , ~ ~  
using a finite difference method, obtained 20000 < Grc, osc 6 25 000 (Pr  = 0, R-F) and 
20000 < Grc, osc d 25 000 (Pr  = 0.015, R-F-C)*. For Pr  = 0.015 (R-F-A) Crochet et ~ 2 . ~ ~  

* Note added in prooE The critical Grashofnumber was overestimated by about 85 per cent as a consequence of their lack 
of accuracy. Following our previous results”. 36* ”* s4 they repeated their calculations using a more accurate method and 
finer meshes, and finally obtained better values of Gr,,o, , .55 
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obtained a steady solution for Gr = 16700 and an oscillatory one for Gr = 79200, but no 
precise investigation concerning the definite nature of the solution has been done in the 
intermediate range of Gr. 

The high accuracy level of the numerical spectral methods should permit one to determine with 
more confidence the conditions of the oscillations near the threshold and the multiple super- 
critical solutions. One of the purposes of the present paper is to check carefully the possible effects 
of the spatial resolution and of the time discretization on the time behaviour of the flow solution. 
Thus two methods are presented for solution of the Navier-Stokes problem in the vorticity- 
streamfunction formulation. The methods have been detailed in previous papers: in one method 
the boundary conditions are handled by the influence matrix technique and the second-order 
backward differentiation formula/Adams-Bashforth scheme is used for integration in time;29 in 
the second method the integration is made using the LSODA solver (which is based on multistep 
schemes) and the boundary conditions on the vorticity are evaluated explicitly.30 The two 
methods (denoted I and 11) are based on tau-Chebyshev approximations and are used con- 
currently. Our results concern numerical simulations of the flow in an A = 4 cavity at Pr = 0 
(R-F and R-R) and Pr = 0015 (R-F-A, R-R-A, R-F-C and R-R-C). The main conclusion will 
be that the P r  = 0 problem is significant for a range of low-Prandtl-number situations, at least up 
to Pr = 0,015. Identical flow regimes are encountered but with relative shifting of the thresholds. 

The paper is organized as follows. In Section 2 the governing equations and associated initial 
and boundary conditions are formulated. The numerical methods are briefly described in 
Section 3. Section 4 is devoted to a general discussion of the accuracy and convergence of the 
solution. Finally, Section 5 is concerned with the determination and analysis of the various flow 
regimes. 

2. PHYSICAL PROBLEM AND MODELTZATION 

2.1. Governing equations 

We study the behaviour of homogeneous (one-component) fluids, corresponding to a liquid 
metal (small Prandtl number Pr), submitted to a buoyancy force inside a rectangular cavity with a 
height H and a length L ( A  = L / H  is the aspect ratio). The simplified geometry adopted for the 
simulation is a model for the two-dimensional cross-section of a horizontal Bridgman boat. The 
vertical side walls of the crucible are maintained at constant temperatures TI and T2 (see 
Figure 1). The temperature TI of the cold side wall is above the melting point; no growth of the 
crystal interface is considered and the geometry is not modified during the process. The 
convective flow is generated by the buoyancy force as soon as TI # T2.  The intensity of the 
resulting flow is connected to the magnitude of the difference 6T = T2 - TI > 0. 

The bottom and side walls are rigid (no-slip and impermeability conditions) while the upper 
horizontal boundary is either a rigid wall (R-R case) or a free surface (stress-free and impermeab- 
ility condition, R-F case). In the R-F case the liquid-gas interface is assumed to be planar. The 

insulated or conducting "L rigid or free surface, 

cold wall 
2-- I I""' hot wall 

/ k---7+ 
insulated or conducting 

0,' 

rigid wall 

Figure 1. Geometry and boundary conditions 
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same conditions on the temperature are imposed at the top and bottom boundaries: either a 
linear variation (conducting case, denoted C )  or an insulating condition (denoted A for adiabatic). 
The motion is assumed to be described by the Navier-Stokes equations within the Boussinesq 
approximation. In dimensionless variables these equations are 

a8pt  + Re(V.ve )  = Pr-'V28, (1) 

ao/at + Re(V-Vo)  = v20 + Gr Re- ao/ax, (2) 

v'+ - w =  0,  (3) 
to be solved in the domain 0 < x < A,  0 < y < 1. In these equations 8 is the temperature, o the 
vorticity, V the velocity and I) the streamfunction. The characteristic scales for space, time, 
velocity and temperature variables are H ,  H2/v,  V* and ST respectively. The physical dimen- 
sionless parameters are Gr = gaH4(ST/L)/v2, Re = HV*/v and Pr = V / K ,  where g is the gravita- 
tional acceleration, a is the thermal expansion coefficient, v is the kinematic viscosity and K is the 
thermal diffusivity. 

Several choices are possible for the characteristic scale of the velocity. For instance, De Vahl 
Davis31 uses V* = v / H  (i.e. Re = 1) when Gr is not too large (conduction-dominated regimes); 
this scaling will be denoted Al .  After Ostrach,j2 a suitable scaling (denoted A2) for large Gr values 
(when inertia terms balance buoyancy terms) corresponds to the reduced free-fall velocity 
V* = v C ~ " ~ / H  (i.e. Re = Gr0'5). In our computations, which use these two scalings indifferently, 
any alterations are noted in the numerical results and the behaviour of the methods following the 
chosen scaling. 

The dimensionless temperature is defined by 0 = A( T - Tl)/ST and the velocity is derived 
from the streamfunction by V = (u, u )  = (- a+/ay,  aI)/ax). In equations (1H3) we note that 

2.2. Boundary conditions 

v = (a/ax, slay) and vz = a 2 / a x 2  + aZ/ayz. 

The boundary conditions ( t  > 0) on the velocity are written in terms of + and o as: 

on the three rigid walls x = 0, x = A and y = 0, 
+ = a+/an = 0,  

where a/an denotes the normal derivative to the boundary; 

on the upper horizontal boundary y = 1, 

either $ = a$/ax = 0 (R-R case) 
or + = o = O  (R-F case). 

The boundary conditions for the temperature are: 

on both side walls x = 0 and x = A, 

(4) 

on the horizontal boundaries y = 0 and y = 1, 

either a8/ay = 0 (insulating condition) 
or O = x  (conducting condition). 

2.3. Asymptotical solutions and starting conditions 

Simple analytical parallel steady flow solutions (uA( y ) ,  uA = 0) were proposed by Hart 16,  l 7  for 
the core of long horizontal cavities when Pr is vanishing. In the limiting case Pr = 0 (finite v and 
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infinite IC), equation ( 1 )  simFlifies to 

V28 = 0, (8) 

and its solution verifying the boundary conditions (6) and any of (7)  is 8 = x, so that the buoyancy 
forcing term in equation ( 2 )  is constant. The velocity solution in the vertical midplane is written as 

u A ( y )  = G r R e -  ‘ ( 2 y  - l ) ( y -  l ) y / 1 2  (R-R case), (94  

u A ( y ) =  G r R e - ’ ( 8 y 2  - 15y + 6)y /48  (R-F case). (9b) 

When Pr # 0 the temperature is expanded as 8 = x + P r T A ( y )  + . . . , where Pr 4 1 .  The 
solution is then obtained by solving the equation resulting from (1) with the velocity solutions (9): 

T A ( y )  = G r [ y 3 ( 6 y 2  - 15y + 10) - 0 . 5 ] / 7 2 0  

T A ( y ) =  G r [ y 3 ( 8 y 2  - 25y + 20)/960 - 1/720]  

T A ( y )  = G r [ y 3 ( 6 y 2  - 15y + 10) - y ] / 7 2 Q  

TA( y )  = Gr [ y 3  (8y2 - 25y + 20) - 3 y ]  /960 

(R-R case), 

(R-F case) 
( 104 

( 1 Ob) 

( 104 

( 1 0 4  

if the horizontal surfaces are insulating, and 

(R-R case), 

(R-F case) 

if the horizontal surfaces are conducting. 
These analytical solutions are modified in order to match the parallel flow to the turning flow 

in the two end regions. Ben Hadid et d 3  proposed the following relations which are used for an 
initial condition to start the computations: 

uob, Y )  = E ( X ) U A ( Y ) ,  

u O ( x ,  Y)‘ E ’ ( X ) $ A ( Y ) ,  

where 

$ A ( Y )  = - jl UA(C)dC 

and E ( X )  is a function introduced to ensure the no-slip conditions on the end walls x = 0 and 
x = A.  In equations ( l l ) ,  ua, E’ and E” are the derivatives with respect to variables. A suitable 
expression for E is 

E ( X )  = tanh[Cx2(A - x ) ~ ] ,  where C = 3.27/(A - 1)2,  

Various initial conditions were considered together with condition (1 1). Also, the motionless 
solution at Gr = 0 was used and the solution at given Gr conditions was computed by 
incrementing Gr progressively (either requiring or not requiring achieved convergence at each 
intermediate Gr step) or decrementing Gr for analysis of the hysteresis process for instance. 

3. NUMERICAL SOLUTION METHOD 

3.1. Space approximation 

The numerical solution is obtained through the tau spectral method33 - 3s using Chebyshev 
polynomial expansions in the two space variables. Thus each flow variable cp = (0, o, $1 is 
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approximated as 
Nr Mo 

q(x ,  Y ,  t )  = C C q n m ( t )  T , ( ~ x / A  - 1) Trn(2Y - 1). (12) 
n = O m = O  

Then the governing equations (1H3) yield 

do,, Jdt = - Re Con,,, + Pr- Don,,,, (13) 

do,, f dt = - Re C,,, + D,,, + Gr Re-  S,,, (14) 

D @ n m  - o n , =  0,  (15) 

where Con,,,, D,,, and S,, correspond to the Chebyshev polynomial expansion of C,, D, and S 
respectively, defined by C ,  = V - V q ,  D, = V 2 q  and S = aO/ax. By application of the tau method, 
the above system is defined for 0 < n < N ,  - 2 and 0 < m < M ,  - 2. The complementary 
equations are derived from the natural boundary conditions (4H7). No special difficulty is 
encountered in enforcing the temperature conditions (6) and (7) or the stress-free condition (5b). 
On the other hand, for a no-slip wall the usual problem of vorticity boundary conditions arises 
because conditions (4) and (5a) apply to the streamfunction and its normal derivative but not to 
the vorticity. The determination of boundary conditions for o is performed by means of two 
methods. The first (method I) is based on the influence matrix technique for determining the 
boundary values of w such that the condition a@/& = 0 is satisfied, while the second (method 11) 
is based on the explicit evaluation of the vorticity at the boundary using equation (3) itself written 
at the boundary, i.e. w = az@Jdnz in which the condition a @ p n  = 0 is introduced. 

Method IZ9* 36 leads to a difficulty associated with the dimension of the spaces in which the 
approximated solution is defined. This difficulty is surmounted by considering a higher-order 
Chebyshev polynomial approximation to J/ and o; that is to say, N ,  = N ,  + 2 = N + 2 and 
M ,  = M ,  + 2 = M + 2. For Method 11, N ,  = N ,  = N and M ,  = M ,  = M simply. 

The coefficients C,,, coming from the non-linear terms are computed using the pseudospectral 
technique in which the differentiations are made in the spectral space while the products are 
performed in the physical space; these two spaces are connected by means of the FFT algorithm 
developed on the Cray vector computer by Tempertod'. 

3.2. Time discretization 

(14) and (15) in the symbolic form 
The solution is advanced in time using multistep time ~ c h e m e s . ~ * - ~ ~  Considering equations 

dZ/dt = F(Z, t )  = F, + Fd + F,, (16) 

D $ n m  - o n , =  0, (17) 

where 

z = (On,, on,), 

F,= (-ReC,, , ,  - ReC,,,), 

Fd= ( p r -  Denmt D w n m ) ,  

F,= (0, Gr Re-  S,,), 

the general form of the linear multistep formula is written as 
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D$tm - wtm = 0, (19) 

where 6t is the time step and the superscript k refers to the time tk defined by tk = tk - + St. 
Two different schemes are considered according to the processing of the boundary conditions. 

The first (method I )  is semi-implicit and composed of a combination of the second-order 
backward differentiation formula (BDF scheme) and an Adams-Bashforth-type scheme. The 
scheme is expressed with K ,  = K ,  = 2, K 3  = K ,  = 0; a1 =: 413, a, = - 113; Po = 0, P1 = 413, 
P2 = - 213; y o  = qo = 213. Thus we obtain the equation 

(3Zk - 4Zk-' + Zk-,)/26t = 2Ft - l  - F t - 2  + F: + F ! ,  (20) 

which is second-order accurate in time. The good stability properties of the scheme have been 
exhibited in Ouazzani et a!.,, for the advection-diffusion equation and in Ehren~tein,~ and 
Ehrenstein and Peyret4, for the Stokes and Navier-Stokes equations. This scheme leads to the 
solution of a Helmho€tz equation for ek with the boundary conditions (6) and (7). Then the known 
value of Ok is brought into the equation for cok, giving a Stokes-type problem for (mk, $ k )  with the 
boundary conditions (4) and (5). This problem is solved by means of an influence matrix 
te~hnique,'~ leading to the solution of successive Helmholtz and Poisson equations with Dirichlet 
boundary conditions. All these equations (for Bk, uk and $k) are solved by means of the matrix 
diagonalization technique.45 

The second scheme used in method 1130 is based on the ODE solver LSODA which includes 
both a selection of schemes and an automatic adaptation of the time step according to the level of 
stiffness of the p r ~ b l e m . ~ ~ - ~ ~  During the transient, the Adam-Moulton scheme (denoted AM) is 
used: 

this corresponds to K ,  = 1 and K ,  = q - 1, where the integer q is the accuracy order3* and the 
coefficients pi ( P o  > 0) depend on q (with 1 < q < 12). Beyond the transient, the LSODA code 
switches to the BDF scheme, where K ,  = 4 and K ,  = 0 

Zk = CriZk-i + S t f l 0 F k ,  
i =  1 

with 1 d q < 5. When 4 = 2 the BDF scheme corresponds to the aforementioned second-order 
scheme used for the linear part in equation (20). The LSODA solver is used for each St increment 
as given in Tables I1 and I11 (lo-, < bt < lo-') and the solution is determined within an 
absolute error corresponding to the tolerance parameter r which governs the local time step for 
each scheme. In the range of solutions presented, r was varied from 10- ' to 10- '. 

4. COMPUTATIONAL ASPECTS 

4.1. Numerical features 

The computations, carried out on a Cray2, were generally performed in the R-F case with both 
method I and scaling A2, and method I1 and scaling Al, and in the R-R case with method I and 
scaling A2. However, for convenience of comparison, all results presented in forthcoming sections 
are scaled with A2. In particular, a number of characteristic variables defined as follows will 
be discussed: I),,,, the maximum value of I) in the steady state solutions or at given instants in 
the oscillatory solutions; $mid, the value of I) at the midpoint (x = A/2, y = 112); I)quar,, the value 
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of II, at (x = A/4, y = 1/4); Res-o, the residual on o, Res-o = (SupJSk - Sk- 'I)/@t SuplSkJ), 
where 9 corresponds to the spectral coefficient of o for method I and to the value of o at 
collocation points for method 11; tf - ti, the time interval for integration; f; the fundamental 
dimensionless frequency of the oscillations; $,,,, max, the maximum value of the time history of 
$max; $,,,, min, the minimum value of the time history of +max; +,,,, mean, the average value 
of $max, emax, mean = ($ma,, max + +,ax, min)/2; $max. the amplitude of oscillations of 
$rnax, $max, f = ($max, max - $ma,, min)/$max, mean' 

The details of the computations are given in Tables IJ-VII. The results are focused on the 
accurate prediction of the onset of oscillatory regimes in both R-R and R-F cases. The 
supercritical oscillatory regimes are simulated for Pr = 0 and 0.015. The stability of the solutions 
was studied with respect to different kinds of initial conditions and disturbances. For each value 
of Gr the initial condition is given either by the asymptotic solution (1 1) or by a solution already 
obtained a t  a smaller or larger value of Gr. The last two columns in the tables refer to the initial 
condition and specify the type of solution obtained respectively. The fundamental frequency f 
given in the tables is calculated in most cases by simply measuring the time difference separating 
the maxima of +max. In a limited number of cases a power spectrum analysis was performed on the 
time history of +mid and 

according to Gr 
and to the resolution (see Tables II-VII). The stability imposes 6t values much smaller (one- 
thousandth) than the period of the oscillations, which ensures the time accuracy of the results. On 
a Cray2 computer, the computational cost for one time step is 001 s for Pr = 0 with spatial 
resolution defined by N = N ,  = N ,  - 2 = 30 and M = M, = M, - 2 = 16, and 0.024s with 
N = 40 and M = 30; these times are increased by about 30% when the temperature equation is 
solved. With method I1 the LSODA solver switches rapidly from the AM (q = 2) scheme to the 
BDF (q = 1-2) scheme after a very short transient compared to the establishment of the steady or 
oscillatory state. In some steady cases large 6t values were used in order to accelerate the 
convergence. The CPU time costs are approximately 0.094.30 s for the computations corres- 
ponding to a time interval of 4 x with N = N ,  = N ,  = 27 and M = M ,  = M ,  = 15 for a 
tolerance parameter r = 10- '-10- '. The cost for one period at near-critical conditions is 
approximately 18-36 s, i.e. at least twice the cost with method I for a similar resolution. 

(see following Figure 18). 
For method I the value of the time step 6t varies from 4 x 10- to 2 x 

4.2. Convergence towards steady state solutions 

For steady state solutions the integration process is stopped when the residual decays below a 
required value, Res-o < 10- with method I1 (see Table 11). On the other hand, some calculations 
devoted only to determine the final (steady or time-dependent) behaviour of the solution were 
stopped with much larger residuals. (In such cases the values of $,,, given in the tables might be 
somewhat inaccurate). In the R-F case and for Pr = 0 the time increment can be taken as large as 
6 t  = 0 1  for 20 x 12 resolution with method I1 (r = for 30 x 16 
in the case of method I. Steady state solutions have been obtained up to Gr = 13 100 when using 
initial conditions corresponding to either a zero-velocity field or to the asymptotic solution (1 1) or 
by incrementing Gr progressively. For example, at Gr = 12 750 the improvement of accuracy (by 
increasing the resolution; see Table 11) is associated to a reduced convergence rate. Thus, with 
method 11 and with the initial guess derived from the solution obtained with a small number of 
polynomials, the residual decays to only about lop4 with 6t = 0.1 after 1506t for 32 x 15. In 
comparison, it reaches about lo-* after 1606t with 20 x 12. 

In the R-R case with Pr = 0, Gresho and Sani,46 Roux et al.47 and Ben Hadid et d 3  have 
observed interesting features of the solution when Gr = 5 x lo4. First the solution is regularly 

and at most 6t = 2 x 
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oscillating over a large number of cycles; then it changes, to tend ultimately towards a steady 
solution. Roux et made use of a pseudo-unsteady method while Gresho and Sani46 and Ben 
Hadid et aL3 used a true unsteady method. Roux et al. and Ben Hadid et al. reported that they 
obtained the steady state by adding an asymmetric disturbance to the initial condition (1 1). 

With method I we obtained a steady solution using the initial condition (11) at Gr = 5 x lo4 
after a short transient stage of nine and six oscillations respectively corresponding to 50 x 30 and 
40 x 16 resolutions (Figures 2(a) and 2(b)). We observed that the convergence to the steady state 
is accelerated when disturbing the 50 x 30 solution by a 50% increase of the instantaneous value 
of tj (x = A/4, y = 1/4) at some instants (as indicated by arrows in Figure 2(c)). In this calculation 
the steady solution is obtained after only four oscillations. Such a behaviour suggests that the 
oscillating solution is weakly unstable. Reverse transitions towards the steady state will be 
discussed again later. 

4.3. Accuracy 

The accuracy is first studied for Pr = 0 and the R-F case (Table 11): the space accuracy is 
discussed at Gr = 10000 and 12750, below the onset of oscillations, and the time accuracy is 
discussed for supercritical conditions at Gr = 13 500,15 000 and 17 500. The influence of the space 
accuracy on the onset of oscillations is emphasized also at critical conditions for Pr = 0.015 in 
the R-F-A (Table IV) and R-R-C (Table VII) cases. The accuracy is also concerned in the R-R 

0.7151 vmax 

0.670 

0.626 

0.402 , t t I 

O . I E  t O.=O 0.00 0.06 0.10 0.15 0.20 

(C) 

t 0.0 
0.4M 0.M7 4.2 

(b) 

0.581 

0.536 

0.492 
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case when a second frequency appears in the solution (Table III), but this will be discussed in 
Section 5.2.2 in the perspective of the study of quasi-periodic motion. 

At Gr = 10000 (R-F) the values of ijmax at steady state obtained with method 1(30 x 16) and 
method I1 (20 x 12) differ only by 0.6%, while the difference is about 2% when they are compared 
with a 61 x 31 finite difference solution.26 Again at Gr = 12750 the solutions computed with 
method I1 using 20 x 12 to 32 x 15 resolutions differ by 0.7% on ij,,,. The influence of the 
tolerance parameter r in method I1 was tested for time-dependent solutions at Gr = 13 500 and 
17 500 when starting from the same initial condition: after several periods the differences are 
evaluated as only 0.01% to 0.001% on variable $,,, when r varies between 5 x 10- and 
The fluctuation rate $max,f is represented in Figure 3 for Gr = 15000 when the resolution is 
improved from 20 x 12 to 48 x 20 and using both methods I and I1 (Table 11). For low resolution 
ijmax, increases rapidly with the degree of the polynomial approximation. For resolution higher 
than 30 x 16 this amplitude reaches an asymptotic value of nearly 9%. Recent finite difference 
computations with the method used by Ben Hadid and R O U X ~ ~  based on a regular 121 x 31 mesh 
have given = 8,37%, = 06193 and f = 13.19, which tend to agree with our 
solution. 

The precise determination of the threshold depends mainly on the spatial accuracy of the 
solution. With a 20 x 12 resolution an oscillatory behaviour is observed at Gr = 15 000 while the 
solution is steady at Gr = 14 500. The onset is obtained at Gr = 13 500 with 27 x 15. For 
Gr = 13 500 the oscillations establish very slowly and the transient depends strongly on the initial 
condition. When starting from the steady solution at  Gr = 13 100 the amplitude still remains very 
small with 27 x 15 after a relatively large integration time. On the other hand, the final amplitude 
(about 4%) can be obtained at t = 5 starting from solution ( 1  1) and with 30 x 16. (See further 
discussion in Section 5.1.2.) The transient towards the oscillatory solution is shown to shorten 
when Gr is increased above the critical Gr (see Figure 8). The effect of the spatial resolution on the 
onset of oscillations is emphasized in the R-R-C case at  Gr = 28 500 (Table VII). Figure 4 gives a 
display of suggestive time history of for Gr = 28 500 (R--R-C). First, the computation (with 
30 x 24) starting from the steady condition at Gr = 28 000 converges towards a steady solution 
(part (a) of Figure 4): as given in Table VII, the spectral residual is nearly 8 x 10- at t = 3. Then, 
starting from this steady solution the computation is pursued with 40 x 30 and the periodic 

R-F case Pr=O Gr=lS,OOO 

lo' 

, I I I I I I  
I I 1  I I I I t"-+-+-i 

A I I I I I 
d l  

1R 
I V  

200 400 600 800 1000 1200 

(NxW 

Figure 3. Effect of the resolution on the oscillation rate $,.,, of the computed solution for Gr = 15OOO in the R-F case 
for Pr = 0 (Table 11). 
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I , , . , , ;  
0. 1 .o 2.0 3.0 5.0 i 7.0 

Figure 4. Effect of the resolution on the solution behaviour at Gr = 28 500 in the R-R-C case (Table VII): (a) convergence 
towards a steady solution with 30 x 24 resolution for 0 < t < 3; (b) convergence towards a time-periodic solution with 

40 x 30 resolution for 3 < t < 7. Note that the time abscissae used in parts (a) and (b) are different 

solution is obtained at t = 13.5. Part (b) of Figure 4 shows the beginning of the revival of the 
oscillations. A similar behaviour is observed for Gr = 19 000 (R-F-A; see Table IV). 

5. ANALYSIS OF THE FLOW REGIMES 

The analysis is concerned with two cases according to the value of the Prandtl number. The case 
Pr = 0 is widely developed for the exploration of the effect of the Grashof number and the 
identification of the basic flow regimes. In that case the temperature equation is disregarded 
and the governing equations are (2) and (3) only where the temperature gradient is constant 
(ae/dx = 1). Then, computations using the full system (1H3) are done in the case Pr = 0.015 with 
the main purpose of studying the thermal boundary effects. A number of basic flow patterns were 
determined by the simulation in the range of Gr and Pr, depending (sometimes) on the initial 
conditions. A number of flow regimes were identified and we have listed and characterized them 
briefly: 

(i) in the R-F case 

(a) a non-symmetric steady solution with one cell (one maximum value of $) denoted S1 (see 
Figure 5(a)( 1)) 

(b) a non-symmetric steady solution with one primary cell and one secondary cell (two 
maximum values of $) denoted S11 (see Figure 5(a)(3)) 

(c) a time-periodic solution denoted P1 with a basic spatial structure analogous to S11 (see 
Figure 10) 

(ii) in the R-R case 

(a) a centrosymmetric steady solution with one cell (one maximum value of I)) denoted S1 
(b) a centrosymmetric steady solution with one primary cell and two secondary cells (three 

(c) a centrosymmetric steady solution with two co-rotating cells ($ has two equal maxima) 

(d) a time-periodic solution (fundamental frequencyf) with the same centrosymmetric spatial 

(e) a quasi-periodic solution (two frequenciesfandf, ) with a spatial structure analogous to P1 

maximum values of I)) denoted S12 (see Figure 1 l(a)) 

denoted S2 (see Figure ll(b)) 

structure as S12, denoted P1 
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but without symmetry, denoted QP; sometimes one or two of the three maxima of t,h 
disappears (see Figure 16) 

( f )  a time-periodic solution (frequencyf/2) denoted P2, with the same spatial structure as Q P  
but with the flow pattern changing alternately between two- and three-cell structures 
corresponding to I),,,, and I),,,, respectively (see Figure 17). 

5.1. Flow regimes for Pr = 0 and rigid-free conditions 

5.1.1. Steady S 1  and S11 regimes. The basic flow at low Gr is a one-cell circulation (Hadley 
circulation type) limited by the lateral confinement. A single vortex fills the entire cavity and is 
centred slightly above the midpoint (S1 solution). In Figure 5 the streamlines are given together 
with the vorticity and horizontal velocity patterns for Gr = 117. On increasing Gr, the vortex is 
stretched horizontally and its core is shifted downstream towards the cold wall (see Figure 5 for 
Gr = 3124) until it reaches a stable location at nearly mid-distance between the bottom and top 
walls and at less than one height from the cold wall (see Figure 5 for Gr = 10300). Stability 
analysis of the Hadley circulation cell for an infinite cavity and Pr = 0 predicts the onset of two- 
dimensional oscillatory motion at Gr = 7580 with Ax = 46.19 The presence of the side walls with 
an extent ( A  = 4) smaller than the size of the predicted disturbance delays the threshold of 
oscillatory motion to higher Gr. Moreover, the confinement brings a significant change to the 
basic cellular flow. At Gr = 10000 a secondary vortex appears inside the basic cell structure (S11 
solution): it arises in the hot region co-rotatingly with the primary vortex (a saddle point occurs 
between their cores). A similar flow pattern was depicted experimentally in a quite different shear- 
layer-driven cavity.48 In this flow (as observed in our computed solutions) the onset of the 
secondary vortex is probably the result of the strong shear in the flow upstream of the primary 
vortex. 

In Figure 6 we have plotted the variation of Gr1’21),ax in terms of Gr up to Gr = 30000 (above 
the onset of oscillation regimes). The steady solutions were mainly computed with a rather coarse 
(20 x 12) resolution, which explains the small irregularities shown in the vorticity pattern for 
Gr = 12 750 (Figure 5). Nevertheless, the vorticity patterns emphasize the modification of the 

R-F case Pr=O 

Gr=10,000 

Figure 5. Steady regimes S1 and S11 in the R-F case for Pr = 0 (Table 11): (a) streamlines, (b) iso-vorticity, (c) iso- 
horizontal-velocity component contour lines for (1) Gr = 117 = 0.318, 
wma, = 10.94), (3) Gr = 10OOO = 0.593, w,,, = 31.73). The iso-values 
corresponding to contourlines are separated by equal intervals of one-twelfth the maximal difference between extremal 

values of the variables 

= 0.058, wmll = 1.34), (2) Gr = 3124 
= 0.547, mma. = 27.18), (4) Gr = 12750 



SPECTRAL SIMULATIONS OF OSCILLATORY CONVECTION 499 

140 -j 

60 - 

40 - 

20 - 
/ R-F case Pr=O 

0 10000 20000 30000 G~ 40000 

Figure 6. Identification of steady and tirne-dependent regimes in the R-F case for Pr = 0 (Table 11). Variation of 
$maxGrl’* versus Gr with resolutions of: A, 20 x 12; 0, 27 x 15; A, 30 x 16; V, 32 x 16 

shear stress at the cold and bottom rigid walls (in particular the two shear layers and the 
separation). The contourlines of the horizontal velocity component reflect similar features: the 
flow becomes more rapid near the cold wall when Gr > 3000. The maximum streamfunction 
(which is representative of the flow rate inside the fluid layer) is shown to follow nearly a linear 
Gr-dependence in the range of the steady regime. 

5.2.2. Oscillatory PI regime. The onset of time-dependent motion (P1 solution) is detected on 
the oscillation of $,,, (the extremum values are represented in Figure 6). 
Oscillations have been observed at Gr 2 13 500. This value is just below the critical Gr predicted 
by Winters’’. 28 (Table I). 

For Gr = 13 500, close to Grc, osc, the oscillation rate $,,,, is rather sensitive to the resolution 
(Table 11): it is about 3.9% for 30 x 16 and 30 x 24, 3.25% for 32 x 16 and 1.9% for 27 x 15. The 
transient stage to obtain stable oscillations is noticeably shortened when the initial condition is 
far enough from the solution (Figure 7). Then, for example, the oscillatory solution with 30 x 24 
is not yet established at t = 4 when the steady solution at Gr = 13000 is taken as the initial 
condition (Figure 7(d)), and I),,,, with 27 x 15 is only 054% at t = 2.9 with the initial condition 
taken at Gr = 13 100 (Figure 7(b)). The transient is obviously shorter ( t  = 1-2) when starting 
either from (11) (Figure 7(c)), from rest (Figure 7(b)) or from the time-dependent solution at 
Gr = 15 000 (Figure 7(a)). 

The transient to stable oscillation behaviour is even much shorter far from Grc, osc. As shown in 
Figure 8(a), the transient stage lasts nearly t = 2 for Gr = 15 000 when starting from Gr = 14 500. 
It is reduced to about t = 0.5 for Gr = 17 500 when starting from Gr = 15000, and to only 
t = 015 for Gr = 20000 when starting from Gr = 17 500. When the initial condition (11) is used 
at Gr = 15000, the oscillatory solution is established after less than t = 1 (Figure 8(b)). The 

and $,,,, 
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Figure 7. Onset of time-dependent regimes in the R-F case for Pr = 0 (Table. 11). Influence of initial conditions on the 
solution at Gr = 13 500. Initial conditions from: (a) Gr = 15000 (oscillatory); (b) Gr = 13 100 (steady) and Gr = 0 (rest); 

(c) equation (11); (d) Gr = 13000 (steady). Resolution: 27 x 15 for (a) and (b), 30 x 16 for (c) and 30 x 24 for (d) 
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Figure 8. Time-periodic regime PI in the R-F case for P r  = 0 (Table 11). Variation of the initial transient stage of 
$,,, versus time: (a) for Gr = 15 000, 17 500 and 20000 by successively increnienting Gr; (b) effect of initial condition (1 1) 

for Gr = 15000 

oscillation rate $,,,, versus Gr is shown in Figure 9(a). The threshold can be estimated by 
extrapolating the amplitude to zero and by assuming the behaviour $,,,, - (Gr  - Grc, o s c ) 1 / 2  as 
found in theoretical studies concerning the Hopf bifurcation. Considering the computed 
for Gr = 13 500 and 15 000, the critical Grc, osc is evaluated as 13 275 with an error f 5 according 
to the spatial resolution considered. Then, by using Grc, osc = 13 270, we represent 
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(b)  

Figure 9. Time-periodic regime P1 in the R-F case for Pr = 0 (Table 11): (a) variation of the amplitude of the oscillations 
(YO) versus Gr; (b) (YO) versus Gr-Grc.osc with Gr,..,, = 13270 

$,,,, - (Gr - Grc,osc)1’2 and observe that the computed results fit fairly well up to Gr = 20000 
(Figure 9(b)). 

for Gr = 20000 together with the instantaneous 
streamlines and countour lines for the vorticity at 10 distinct times equally spaced by an interval 
of 0.016 during a period. Note that the maximal values of t,bmax are taken on the grid of collocation 
points corresponding to a Chebyshev decomposition; the irregularities near the maximum of t,b,,, 
result from this extremum travelling from one collocation point to a neighbour. The periodic 
motion is associated with the breathing of two vortices: the primary vortex grows and decays, the 
secondary grows then disappears, swallowed by the primary one. Separated (counter-rotating) 
flows develop at certain times of the period between the primary and secondary vortices, and 
between the secondary vortex and the hot wall (weaker separation). At Gr = 13 500 we had 
already observed similar oscillations between one- and two-vortex patterns at the beginning of 
the adjustment stage, but this is rapidly damped and the resulting flow exhibits only a weakly 
pulsating two-vortex pattern. The one-to-two-vortex periodic solution already exists at 

Figure 10 shows the time history of 
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Gr = 15 OO0.27 At Gr = 30000 a movie film was made which emphasizes a more complex pattern: 
the separation flow below the two-vortex pattern becomes stronger and gives a vortex-shedding 
phenomenon with a counter-rotating vortex which arises and cuts the basic flow at the location of 
the saddle point.49 Near the hot wall a separation region tends to appear while the secondary 
vortex is regressing and being swallowed by the primary one. The contourlines of the horizontal 
velocity complete the description of the flow and the vorticity contourlines emphasize the 
evolution of the shear stress, which varies in time mainly along the bottom wall. 

Concerning the flow regimes at higher values (Gr > 30000), a number of complementary 
simulations were carried out in the range of Gr up to 220000 using resqlutions up to 64 x 32.50 
The main preliminary results have shown that (i) the P1 regime persists up to Gr z 210000, (ii) a 
chaotic behaviour is found at Gr = 220 OOO and (iii) the transition occurs via either a period-two 
or a period-three solution. 

5.2. Flow regimes for Pr  = 0 and rigid-rigid conditions 

Because of the no-slip boundary conditions on all the walls, the critical Gr for the oscillatory 
R-R mode is higher than for the R-F case17 and the solution tends to conserve the symmetry 
induced by the boundary conditions: the S1 and S12 steady solutions and the P1 time-periodic 
solution are centrosymmetric. At Gr close to 30000 the symmetry is lost and the time-dependent 
solution is first governed by two frequencies (quasi-periodic QP solution) then by a second 
periodic behaviour different from P1 (P2 solution): the solution oscillates between a two-cell (S2) 
and three-cell (S12) structure. This competition between different modes of convection suggests 
the occurrence of a pairing behaviour as encountered in many situations where there is a breaking 
of (odd or even) symmetry. This precedes the change into a different spatial mode. In our case 
further increase of Gr brings a bifurcation of the solution to a steady mode of convection (S2) 
which involves two distinct cells in the horizontal direction. This kind of solution is found to be 
stable up to Gr = 50 000 at  least and to per& on decreasing Gr down to Gr = 24 500, for which a 
(S12) solution still exists. 

P1 R-F case Pr=O Gr=20,000 

0.21 0.25 0.29 0.33 0.37 

(a) 

Figure 10. (a) 
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Figure 10. Time-periodic regime P1 at Gr = 20000 in the R-F case for Pr = 0 (Table 11): (a) time history of i/tmax; (b) flow 
patterns at 10 time steps during a period of time. Instantaneous streamlines, iso-vorticity and iso-horizontal velocity 
component contourlines. The contourlines are separated by equal intervals of one-twelfth the difference between extremal 
values of the variables at each time step. The time steps start at t x 0 2 8  and are separated by a 0.0064 interval. 
The maximal values of the variables (i/t,,,, cow,=) are given at each time (n) as: (1) (0.642, 150.2); (2) (0.677, 157.6); 
(3) (0.687, 167.7); (4) (0.682, 162.9); (5) (0648, 146.4); (6) (0.619, 143.9); (7) (0.588, 127.6); (8) (0567, 123.6); (9) (0.568, 125.1); 

(10) (0.589, 142.5) 

The details of these solutions are given in Table I11 and in the following sub-sections. The 
calculations were carried out in the range 10000 d Gr < 50 000 with method I except in one case, 
for Gr = 30000, where method I1 was also used in order to confirm the occurrence of a quasi- 
periodic behaviour. Note that at a given Gr we always obtained the same solution when 
starting from the asymptotic solution (11) or a centrosymmetric solution (S1 or S12) as the 
initial condition: S1 then S12 for Gr < 25 500; P1 for 26000 < Gr < 28500; QP for 
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29 500 Gr < 30450 P2 for 30500 < Gr < 33000; S2 for Gr 2 33 500. On the other hand, a 
second solution S2 can also be obtained in the range 24000 < Gr < 33 500 when starting from an 
S2 initial condition. In the following sub-sections the discussion will be organized in three parts. 
First we consider the steady solutions obtained with the asymptotic solution (1 1) as the initial 
guess or when Gr is increased by progressive steps below the threshold of the Hopf bifurcation 
(steady S1 and 512 regimes). In the second part we analyse carefully the onset of the oscillatory 
motion, the transition to a quasi-periodic behaviour with frequencies f, fi and the second 
transition to a periodic behaviour with frequency f /2. The third section is devoted to the steady 
(S2) regime and to the hysteresis effect observed when decreasing Gr down to 24 500. 

5.2.1. Steady S 1  and S12  regimes. Starting the computation with the initial condition (11) for 
Gr = 10000, the solution converges to an S1 solution. For larger Gr up to 25 500 an ,912 solution 
is obtained (Table 111). Figure 1 l(a) displays the steady flow pattern and the convergence history 
for Gr = 25 000. The flow at Gr = 10 000 is slightly different from the basic monocellular Hadley 
circulation. It is no longer strictly parallel in the core region and the turning of the flow by the end 
walls extends to the centre section of the cavity. However, a fully established instability still 
cannot be identified at this Gr value. At Gr = 25 000 the size of the major cell is nearly 1.6. The 
instability predicted by theory at Gr > 7942 is steady". l 9  and the critical wave number 
( A x  = 234) is smaller than the aspect ratio of the cavity. The steady solutions suggest that the 
onset of a steady instability should occur at Gr > loo00 and that the corresponding wave 
number should reduce on increasing Gr. Then the linear stability analysis seems to be possibly 
somewhat realistic for a finite cavity at A = 4 even if it is not able to predict the second transition 
to a time-dependent behaviour. 

5.2.2. Time-dependent P I ,  QP and P2 regimes. For the study of time-dependent regimes we 
were careful to perform the computations over a long period of time during which the solution 
behaviour remains unchanged. Nevertheless, we do not claim that the solutions maintain the 
same behaviour if the computation is pursued further. 

The solution becomes time-dependent (Pl) on increasing Gr to 26000. The spatial structure of 
the flow remains similar to S12 observed for Gr = 25 500. Oscillatory flows are obtained for Gr up 
to 33000 (Table 111) but they are no longer P1 when Gr 2 29500. From the calculations 
effectively performed, the critical Grashof number Grc, osc at the onset of oscillations lies between 

R-R case Pr=O Gr=25,000 

1 0 . 3 8  4 r-;/,- s2 

0.36 0.40 
0 .  2. t 4 .  0 .  1 .  1 2  

Figure 11. Steady regimes S12 and S2 in the R-R case for Pr = 0 (Table 111). Time history of and steady flow 
patterns ((1) vorticity and (2) streamlines) for Gr = 25 OOO. Occurrence of two possible steady solutions depending on initial 
conditions: (a) asymptotic S1-type solution ( I l ) ,  refer to run 25000(b' in Table 111; (b) S2-type steady solution at 

Gr = 26000, refer to run 25000'd' in Table 111 

(a) (b) 
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25 500 and 26000. This result agrees quite well with the value Grc, osc = 25 525 calculated by 
Winters.” The oscillatory solutions are characterized by the fundamental frequenciesfreported 
in Table 111. 

When starting from the P1 solution at Gr = 28 500, the time history of $,,, at Gr = 29 500 first 
exhibits a P1 behaviour (with one frequency f )  over a long time t = 8, then self-sustained 
disturbances arise and settle down quickly into a QP behaviour. During the transient state the 
symmetry of the flow is lost and a second frequencyf’ (which is incommensurate withf) appears 
corresponding to the modulation of $,,,. The QP solutions are obtained in the range 
29 500 < Gr < 30450 and the frequency f ’  is observed to diminish as Gr increases (see 
Figures 12-14). Note that the establishment of the QP regime is obtained at t w 2 5  for 
Gr = 30000 when starting from Gr = 25 500 and at t = 8 for Gr = 29 500 when starting from 
Gr = 28 500. More precisely we obtained successively: f= 17.45 w 6s’  for Gr = 29 500, 
f= 17.55 = 9f’ for Gr = 30000; f= 17.56 w lOf’ for Gr = 30 100; f =  1752 w l5f’ for 
Gr = 30 300;f = 1753 % 22f’ for Gr = 30 400,f= 17.50 w 36 f’ for Gr = 30 450. The time histor- 
ies of $mid and $quart are given for some of these Grashof numbers in Figures 13(ak13(d) 
and 14(a)-14(d) respectively. The time histories reveal the modification of the frequency f ‘  with 
Gr. Figures 13(e) and 14(e) show that the regime is no longer quasi-periodic at Gr = 30500. 

The above results have been obtained with 40 x 30. In order to determine the possible effect of 
the spatial resolution, the solution at Gr = 30000 was computed with different resolutions (see 
Table 111). With the low (30 x 16) resolution we obtainf= 17.43 w 7f’, which reveals a rather 
important change in the frequency of modulation. The results do not significantly change with 
respect to the case 40 x 30 on increasing the resolution up to 100 x 80 during the QP regime. 
Figure 15 shows the time histories of $mid obtained during a modulation for four different 
resolutions, together with the variation of the extrema of $mid plotted with respect to the number 
of Chebyshev polynomials (Figure 15(e)). With 40 x 30 the QP behaviour is established after a 
transient time longer than that with 30 x 16. The transient time can be significantly shortened by 
introducing disturbances during the P1 stage. (The disturbances correspond to a 50% increase of 
$(A/4, 1/4).) This suggests that the P1 solution is weakly unstable. On the other hand, the 
stability of the QP regime is confirmed with respect to 100% disturbances superimposed on the 
solution. 

Figure 16 exhibits the streamlines for Gr = 30000 at 10 instants during the modulation. By 
observing these pictures we notice a break of symmetry, the solution oscillating between two- and 
three-cell states. Furthermore, the central cell is always the most important, with a magnitude 
often twice as large as the secondary cells. Note that we observe at some instants a pairing 
behaviour when one of the secondary cells is swallowed by the major one. Also, regions of weak 

QP R-R case Pr=O G ~ 3 0 . 0 0 0  
n no -Vrn 

0.43-1 
0. 2. 4. 6 .  t 8  

Figure 12. Time-dependent QP regime in the R-R case for Pr = 0 (Table 111). Time history of +,,, at Gr = 30000 with 
40 x 30 resolution, refer to run 30000‘d’ in Table 111. Initial condition from steady S12 solution at Gr = 25 500 
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R-R case Pr=O 
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Figure 13. Time-dependent QP and P2 regimes in the R-R case for P r  = 0 (Table 111). Time histories of $,,,id at 
(a) Gr = 30100, (b) 30300, (c) 30400, (d) 30450, (e) 30500 with 40 x 30 resolution. QP-type solution for (aHd) and 

P2-type solution for (e) 

separation flow appear near the horizontal walls in the neighbourhood of the saddle points (the 
dotted lines correspond to $ = 0). 

At  Gr = 30 500 the solution is no longer QP periodic. The streamlines are given in Figure 17 
for Gr = 31 000 at eight instants during two consecutive oscillations, together with the time 
history of The latter shows a periodicity with frequencyf= 17.12 (Figure 17(b)) while the 
flow patterns in Figure 17(a) show a periodicity with frequency f / 2  = 8.56 (see the skew 
symmetry, for instance, in the streamline patterns (l), (5) and (3), (7) at two consecutive times 
separated by l / f ) .  This shows that the maximum of $ is always close to the midpoint of the 
domain and is practically unaffected by the f /2 behaviour. Similarly, the time history of $,,,id for 
Gr = 30 500 (Figure 13(e)) exhibits the same behaviour as described above for $,ax. On the other 
hand, the history of t+bquart (Figure 14(e)) clearly shows {.he actual periodicity of the flow 
characterized by the frequencyf/2. In the range 30 500 < Gr < 33 000 the solution is P2. A power 
spectrum analysis was performed on and $quart for Gr = 30 500 (Figure 18(a)). This confirms 
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R-R case Pr=O 
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Figure 14. Time-dependent QP and P2 regimes in the R-R case for Pr = 0 (Table 111). Time histories of +,",,, at 
(a) Gr = 30100, (b) 30300 (c) 30400, (d) 30450 (e) 30500 with 40 x 30 resolution. QP-type solution for (aHd) and 

P2-type solution for (e) 

that the f / 2  frequency, although present in the $mid history, has a negligible amplitude. On the 
other hand, it is almost half the amplitude of the fundamental for $,,,,,. 

Coming back to the QP regime, the power spectra of $,,,id and $quart for Gr = 30000 
(Figure 18(b)) reveal the following features. The power spectrum of exhibits a second 
frequencyf' with an amplitude only one order of magnitude smaller than that of the fundamental. 
The power spectrum of t,bquart also exhibits this f' frequency but with an amplitude three orders of 
magnitude smaller than that of the fundamental. Moreover, it reveals the presence of two 
frequencies f i  and f i  which are only one order of magnitude below the fundamental. The 
frequencies arefi = 9.809 andf, = 7.797 withf= 17.605 andf '  = 2.012. The following relations 
exist betweenf,f',fi andfi: f' = -f+ 2fi  =f- 2 f i ;  thusf, - f i  =f' andf, + f i  = f ,  suggesting 
that the QP behaviour is better characterized by the frequencies f and f i  and that f' and f2 are 
linear combinations of these. We note thatf, andfi are symmetrically close to f /2, which suggests 
the occurrence of a strong resonance phen~menon.~ '  Then, as Gr is increased,fi tends towards 
f /2 while f i  -+ f / 2  and f' -+ 0, as revealed by the analysis of Figure 14. The periodic regime 
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Figure 15. Effect of the resolution on QP time-dependent solution at Gr =: 30000 in the R-R case for Pr = 0 (Table 111). 
Time-histories of with (a) 30 x 16, (b) 40 x 30, (c) 60 x 60 and (d) 100 :< 80 resolutions. (e) Variation of the extrema of 

$,,,,d with resolution 

obtained is in fact characterized by the subharmonic solution of frequency f/2, originated from a 
strong resonance phenomenon. 

5.2.3. Reverse transition to steady S 2  regime. At Gr = 33 500 we obtain a steady solution S2, 
and the ultimate two-cell flow pattern is shown in Figure 19. This centrosymmetric solution 
presents a strong periodic feature in the horizontal direction. In comparison with Figure 1 l(b) 
obtained for a smaller Gr, the coupling between the two cells is weakening as their sizes decrease 
with increasing Gr. Independently of initial conditions we always obtain the same S2 solution in 
the investigated range of Gr ( 3 3  500 < Gr < 50000). This 'steady state is obtained more or less 
rapidly as discussed in Section 4.2 for Gr = 50 000. Note that a two-cell initial condition reduces 
substantially the duration of the transient stage. As a resull one could surmise that the three-cell 
solution observed in the transient stage is in fact weakly unstable. 

Starting from the solution computed at Gr = 35000, the S2 solution persists down to 
Gr = 24 500. The values of max are reported in Figure 20, which summarizes the results 
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QP R-R case Gr=30,000 and Pr=O 

Figure 16. Time-dependent QP (40 x 30) solution at Gr = 30000 in the R-R case for P r  = 0 (Table 111): (a) streamline 
patterns at 10 time steps during a double period; (b) time history of $,,,ax. Time steps at (1) t = 10,5150, (2) 10.5296 

(9) 10,6290, (10) 10.6405 ($,,,ax. ,,,) 
($max,,,,ax), (3) 105384, (4) 10.5546 ($m.x,min) (5) 10.5747, (6) 10,5844 (7) 10.59823 (8) 10.6108 ($max,min), 

P2 R-R case Gr=31.000 and Pr=O 
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Figure 17. Time-dependent P2 solution at Gr = 31 000 in the R-R case for Pr = 0 (Table 111): (a) streamline patterns at 
eight time steps during a double period (b) time history of $max. Time steps at (1) t = 3.1287 (2) 3.1394, 

(3) 3,1540 ($,,,ax,,,,in), (4) 3.1719, (5) 3.1871 ($max,max), (6) 3.1973, (7) 3.2125 ($max~min), (8) 3.2389 

discussed in this sub-section. The results obtained for 24 500 < Gr d 33 450 prove the existence of 
a hysteresis effect: two different solutions can be obtained simultaneously in the range-on one 
side S2, on the other side either S12 or P1 or QP or P2. The dotted arrowed lines represent the 
transition existing between the two kinds of solutions. The transition P2 -+ S2 is determined 
accurately. The transition S2 -, S12 between steady solutions suggests that the lower bound of 
the hysteresis cycle is located between Gr = 24 000 and 24 500. 

5.3. EfSect of variable temperaturejeld and thermal boundary conditions for Pr = 0.015 

The influence of a variable temperature field was investigated for Pr = 0.015. One of the 
purposes is to check if the results obtained for the Pr = 0 problem are realistic for low-Pr 
situations. Calculations were performed with method I and the results are given in Tables IV-VII. 

We have observed that the same steady (S1 and Sl l )  and time-periodic (Pl) regimes exist in the 
R-F case for Pr = 0.015 (conducting and insulating wall cases) as for Pr = 0 but at higher 
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Figure 18. Time-dependent QP and P2 solutions in the R-R case for Pr = 0 (Table 111): (a) power spectrum analyses of 
and $,,,,, for Gr = 30 500, (b) for Gr = 30 OOO 
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Figure 19. Steady state S2 solution at Gr = 33 500 in the R-R case for Pr = 0 (Table 111): time history of $,,,id with 
(1) vorticity and (2) streamline patterns 

thresholds. Such a behaviour is predicted by the theoretical analyses. We did not investigate the 
case Pr = 0015 as extensively as the case Pr = 0. For example, the hysteresis effect has not been 
investigated. However, the calculations performed with Pr = 0.01 5 have exhibited similar 
behaviours; in the R-R-C case the solutions S12, P1, QP, P2 and S2 are identified. The R-R-A 
case corresponds to higher thresholds: the onset of the P1 regime is estimated close to 
Gr = 33 500. In the range up to Gr = 40000 we only obtained the S12 and P1 regimes, while the 
QP and P2 regimes should arise at Gr > 40000. 

Insulating horizontal wall conditions lead to a delay in the onset of oscillatory convection as 
noticed by Winters.20 For the R-F-A case Grc, osc z 19000 (increase of about 29% compared to 
the R-F-C case) and for the R-R-A case Grc,osc z 33500 (increase of 17.5% compared to the 
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Figure 20. Identification of a hysteresis cycle in the R-R case for Pr = 0 (Table 111): (a) $ma,, m.I versus Gr for 
loo00 < Gr < 50000; (b) blow-up of range 25000 < Gr < 35000 

R-R-C case) (see Table I). The comparisons with Winters’ results show that his values of Grc, osc 

are 13.6’/0 larger than ours in the R-R-A case and 126% smaller than ours in the R-F-A case. 
In this last case, however, our value of Grc,osc is in fairly good agreement with the value 
(20 500 f 250) recently obtained by Sani and Carpenter” using direct simulation through 
a finite difference method (30 x 90 to 40 x 120 graded meshes). Note that for the R-F-A and 
R-R-A cases our main aim was the determination of the thresholds. Here the computations 
were performed up to Gr = 40000, only; this range of Gr allows for comparisons with the S12 
and P1 regimes for the R-R-A case and with the ,312, P1, QP, P2 and S2 regimes for the 
R-R-C case. Figure 21 displays the vorticity, streamline and isotherm patterns for Gr = 30000 
(R-F-A) at six instants during a period of the established oscillatory solution, starting at the time 
corresponding to the maximum of $max. The distortions of the temperature fields appear to 
remain relatively limited during the cycle. 

We now describe the main results obtained with the conducting wall conditions. For the 
R-F-C case Grc, osc x 14 700 and for the R-R-C case Grc, osc x 28 500. These values are in good 
agreement with those found by Winters (see Table I). In the R-F-C case the solutions computed 
for increasing values of Gr up to 20000 show the same subsequent regimes as for Pr = 0 (see 
Table V). 

Let us now give some details about the computations performed in the R-R-C case. The 
computed solution is P1 in the range 28 500 < Gr < 35 OOO, QP for 35 000 < Gr < 37 000, P2 up 
to Gr = 40 000 and finally an S2 solution was found for Gr = 45 000 (Table VII). For Gr = 35 000 
the solution is still P1 at t = 8 with 40 x 30 resolution and an initial condition of type P1, while 
we get a QP regime as soon as t = 2 with 30 x 16 resolution starting from initial condition (1  1). 
As in the Pr = 0 case we observe the modulation of $,ax, corresponding to frequenciesf’ = 3.9 for 
Gr = 35 000,3.3 for Gr = 35 500,2.6 for Gr = 36 0o0, 1.8 for Gr = 36 500 and 0.7 for Gr = 37 OOO. 
Again we observe the frequenciesf, andf, such thatf, +f2 = f andf, -f2 = f ‘. Figure 22 shows 
the time-history of the temperature Bmid at the midpoint of the cavity during the QP regime for 
Gr = 37 000. Figure 23 illustrates the P2 solution obtained for Gr = 40000 when starting from 
Gr = 28500. The solution is P1 during the first stage then settles down to a P2 solution. The 
transition between the two states is associated to the loss of flow symmetry and is emphasized by 
the time histories of +,,, and Bmid in Figures 23(a) and 23(b). During the non-symmetric phase 
P2, Omid oscillates between 2-035 and 1.965 (Figure 23(c)), while it remains constant at its mean 
value during the centrosymmetric stage P1. As for Gr = 31 000 and Pr = 0, a complete time 
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Figure 21. Time-periodic P1 regime in the R-F-A case for Pr = 0.015 ,and Gr = 30000 (Table IV): (a) iso-vorticity, 
(b) streamline and (c) isotherm patterns at six time steps during a period of P1 solution; (d) time history of 
(e) enlargement of the last four periods of the asymptotic oscillatory state. Time steps at (1) t = 2.0149 ($,a,,,,,), 

(2) 2.0250, (3) 2.0350, (4) 2.0442 ($mar.min) ( 5 )  2.0550, (6) 2.0625 
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Figure 22. Time-periodic QP regime in the R-RC case for P r  = 0.015 and Gr = 37000 (Table VII): time history of Omid 
for 0 < t < 9 with 30 x 16 resolution 
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P2 R-R-C case Gr=40,000 and Pr=O.OlS 
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Figure 23. Time-periodic P2 regime in the R-R-C case for Pr = 0.015 and Gr = 4OOOO (Table VII): time histories of 
(a) $,,, and (c) 6,, for 0 < t < 4 with 30 x 24 resolution and of (b) $,,, and (d) Omid for 8.25 < f < 8.45 with 90 x 80 

resolution 

period of the flow corresponds to two cycles of +,,, (Figure 23(d)). The time history of Omid is 
more clearly representative of the actual periodicity of the P2 regime. On checking the accuracy of 
the solution for Gr = 40000 (see Table VII), we do not observe any qualitative change when the 
resolution varies from 30 x 24 to 90 x 80 and only a slight difference in the amplitude of 
oscillation is noticeable when the resolution goes from 30 x 24 to 40 x 30. The slight discrepancy 
in +,,,, shown in Table VII is attributed to a collocation effect: the maximum of JI is computed 
on the grid of the collocation points, which changes when the resolution is modified. 

Concerning the flow patterns shown by Wintersz0 for these cases, we observe some obvious 
similarities with our direct simulations. In the R-F-C case the streamline patterns exhibit an 
oscillation between one- and two-cell configurations. However, a major difference is sought 
because the main cell is shown by Winters' expansion solution to move between the hot and cold 
sides of the cavity, the centre of the cell travelling similarly. In our computations the solution 
corresponds to the breathing of the two-cell structure: close to Grc, osc the pattern remains of the 
two-cell type but with fluctuating cells. For Gr much larger than Grc,osc the flow oscillates 
between one- and two-cell patterns, but the major cell always remains located near the cold side 
even if it expands into the hot region to swallow the secondary cell during the period. Also, the 
solution that we obtained in the R-R-C case near the threshold at  Gr = 30 OOO oscillates between 
a main centred cell and two secondary side cells. These secondary cells are present during the 
entire period but never reach the same vertical height as the major one, as suggested by Winters' 
solutions. Figure 7 in Winters' paperz0 shows the visualization of the oscillatory flow arising near 
the Hopf bifurcation. It reveals the existence of a one-cell configuration during more than one- 
half of the cycle. The side cells arise temporarily and disappear. Such a behaviour (one-to-three- 
cell configuration) was not found in our computed solutions near the first bifurcation but at a 
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PZ R-R-C case Gr=38,000 and Pr=O.OIS 
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Figure 24. Time-periodic P2 regime in the R - R C  case for P r  = 0.015 and Gr = 38000 (Table VII): time histories of 
(a) (b) +,,.,, and (c) Omid with 40 x 30 resolution. (d) Streamline patterns at four time steps during a period of P2 

solution. Time steps at (1) t = 20,7993 ($,,,ax. ,,,ax), (2) 20,8235 (+,,,ax, ,in), (3) 20,8496 (+,,,ax, ,,,), (4) 20,8738 (+,,,, ,,,J 

certain distance from Grc, osc after the transition to the PZtype solution characterized by the half- 
frequency f / 2  (see Figure 24 for Gr = 38 000). 

6. CONCLUSIONS 

Flows of a low-Prandtl-number fluid inside a differentially heated cavity have been calculated 
using tau-Chebyshev methods. The limiting case Pr = 0 and the case Pr = 0.015 have been con- 
sidered with a variety of boundary conditions for dynamical quantities (no-slip or stress-free 
walls) and temperature (conducting or insulating walls). For each configuration a finite set of 
Grashof numbers has been investigated. Also, a finite time of integration has been considered for 
unsteady calculations. It is obvious that these two facts must be kept in mind when conclusions 
are drawn, even if a large number of runs have been performed. 

In the case P r  = 0 calculations have been conducted with two different methods and the results 
obtained by both are in perfect agreement. In the rigid-free configuration two types of solutions 
have been determined according to the value of the Grashof number: steady solutions for lower 
values and a time-periodic solution for larger ones. For the rigid-rigid case the threshold of the 
oscillatory motion is increased and the variety of solutions, is larger: steady, periodic and quasi- 
periodic solutions. For large values of Gr the flow again becomes steady and remains so on 
decreasing Gr, exhibiting a hysteresis cycle. 

When Pr = 0.015 the threshold for each bifurcation is increased compared to that observed in 
the Pr = 0 case and, moreover, is higher in the insulating case than in the conducting case, Again, 
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in the investigated range of Grashof numbers, steady and periodic solutions have been exhibited 
as in the Pr = 0 case. This shows that Pr = 0 solutions give realistic predictions for the regimes in 
a range of low-Pr problems (at least up to Pr = 0.015). The results obtained for Pr # 0 suggest 
that the oscillations of the flow do not originate from possible fluctuations occurring in the 
temperature field. 

From the numerical point of view, method I1 (based on LSODA) is generally less time- 
consuming than method I when only steady regimes are of interest. Method I1 is also efficient for 
time-dependent solutions in the case of moderate resolution; however, for large resolutions 
method I is to be recommended. The influence matrix technique (method I) guarantees rather 
good stability conditions. The R-F conditions generate high speed levels which place more 
restriction on the time step than in the R-R case. Both solution methods are in very good 
agreement from the accuracy point of view. The threshold of the oscillations in the R-F case was 
found with only about 10% discrepancy when using a coarse resolution. (With classical methods 
the accurate determination of the threshold can require large resolution.) Moreover, using a 
limited spatial resolution we have identified elsewhere the various regimes encountered in the 
R-R case with only small differences in the thresholds. 

The R-R case presents a larger variety of regimes than the R-F case, although the velocity 
scales are smaller. Multiple solutions were shown to exist over a range of Gr which give rise to a 
complex hysteresis cycle involving steady, periodic and quasi-periodic regimes. The methods have 
also been tested by the authors in the Pr = 0 case in order to investigate the transition to the 
chaotic regimes in the R-F caseso and the occurrence of secondary hysteresis cycles in the R-R 
case. 
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